If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2-9k-3=0
a = 3; b = -9; c = -3;
Δ = b2-4ac
Δ = -92-4·3·(-3)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{13}}{2*3}=\frac{9-3\sqrt{13}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{13}}{2*3}=\frac{9+3\sqrt{13}}{6} $
| -10-3p=-5p+10 | | 4^3x+2=(1/32)^x-3 | | -2+10d=9d | | U^2+8u-7=0 | | –2=2(1+a) | | -2c+1=10-3c | | 15=14+q/6 | | 9s+1=8s | | 5x+4=7x-19/3 | | 3r=3+4r | | 9q^2-5q=0 | | 25(x−2)=−3 | | 5q=-10+7q | | 15.5+8x=3(3.5x-9.5) | | 3+(-h)+(-4)h=-7 | | (4+x)(5+x)-20=10 | | 6x^2+10=16 | | -6.7=n-2.5 | | y2−225=0 | | d+2.7=-4.2 | | 5(x−3)=−11 | | -2.3=1.9+7n | | 11m+5=60 | | F(x)=-11x+2 | | 3j-2=31 | | 15=m/3+6 | | 8h+9=17 | | 4=-16t^2+30t | | 14=2g-6 | | 4(2x+5)-5x-30=80 | | -4(5+6x)=4 | | -7(3x+6)=-168 |